Henrik Svensmark med foredrag i Oslo

Tirsdag 7.juni kl 1900 holder Svensmark foredrag i Litterturhuset i Oslo. Gjennom 20 år som professor ved DTU har han gjennomført banebrytende klimaforskning med fokus på sol, kosmisk stråling og skydannelse, forskning som over tid har blitt stadig mer uønsket etter hvert som resultatene ble sikrere.

I dagens Europa forsker man ikke ustraffet på forhold hvor politikere og klimapanel har vedtatt at forskningsobjektene ikke har betydning for klimaendringer. Derfor er Svensmark nå forhenværende professor, og lønnet av DTU bare ut året. Han må muligens gå i eksil for å kunne fortsette sin forskning, akkurat som hans forskerkollega Tycho Brahe i 1597.

Henrik Svensmark holder foredrag i Litteraturhuset 7.juni. Hans forkning på .
Støtt oss ved å dele:

9 kommentarer

  1. H.I. Abdussamatov Earth’s Climate Does Not Depend on Variations in Cosmic Rays and Cloud Coverage // Geomagnetism and Aeronomy, 2019, Vol. 59, No. 7, pp. 935–941. DOI: 10.1134/S0016793219070028

    The hypothesis put forward by Svensmark and Friis-Christensen (1997), Svensmark (2007), Svensmark et al. (2017), and Stozhkov et al. (2017) assumes while completely ignoring the influence of quasi-200-year variation in TSI by ~0.4% (Shapiro et al., 2011; Egorova et al., 2018) that the increased penetrating by the galactic cosmic ray flux of the lower layers of the Earth’s atmosphere during the Grand Solar Minimum causes only an increase in cloud formation and the TSI reflected back into space. However, without calculating the changes in the global average annual energy balance between the Earth and space (Е0), the authors of the hypothesis argue that this effect will lead to a long-term negative average of the Earth’s annual energy budget and to climate cooling up to a Little Ice Age. The hypothesis also completely ignores all subsequent changes in atmospheric physical processes associated with increasing cloud coverage: the increased reflection and absorption of thermal radiation from the Earth’s surface and of solar radiation reflected from the Earth’s surface, the narrowing of atmospheric transparency windows, and the enhanced greenhouse effect. These processes compensate for the cooling. Our assessment shows that the changes in the global average annual energy balance between the Earth and space before and after a 2% increase in cloud coverage in the lower atmosphere have a difference of almost zero: E1 – E0 ≈ 0. The potential increase in cloud coverage causes virtually no variations in the global average annual energy balance between the Earth and space and has no effect on climate change (cooling).

    H.I. Abdussamatov Cosmic Rays and Clouds Variations Effect on the Climate is Insignificantly // Applied Physics Research; Vol. 10, No. 4; pp. 81-86; 2018. doi:10.5539/apr.v10n4p81

    It is believed that an increase in the area of the cloud cover in the lower atmosphere of the Earth caused by the influence grows of galactic cosmic rays in the period of the Grand minimum of solar activity lead to an increase the reflected part of incoming solar radiation back into space and by that to a cooling of the climate down to the Little Ice Age. We will try to estimate an inverse aspect of simultaneously influence of increase in the area of the cloud cover in to the narrowing of the transmission of the windows of atmospheric transparency, which practically compensates of this cooling by means of accumulation of energy. An increase in the reflection of the thermal radiation of the Earth surface and of the solar radiation reflected from it, as well as the significant amplification of the greenhouse effect, presents an important additional source of heating due to the increase in the area of the cloud cover in the lower atmosphere. The impact of the increase in the area of the cloud cover caused by the influence grows of cosmic rays on the climate is very small.

    Back on July 28, 2018, I sent my second article to «Jim O’Brien» , «Jed van de Poll» , «Tim Gleeson» , «John Butler» , «Peter O’Neill» , «Brian Sweeney» , «Ed Walsh» , «Tony Barry» , «Henrik Svensmark» , «Dr Nicola Scafetta» , » Dr Nir Shaviv.alt» , «Tony Carey»

    However, scientific objections from Prof. Svensmark and Shaviv against my results I have not received.
    May 26, Habibulli Abdussamatov

  2. THE POTENTIAL INCREASE IN CLOUD COVERAGE CAUSES VIRTUALLY NO VARIATIONS IN THE GLOBAL AVERAGE ANNUAL ENERGY BALANCE BETWEEN THE EARTH AND SPACE AND HAS NO EFFECT ON CLIMATE CHANGE (COOLING):
    H.I. Abdussamatov Earth’s Climate Does Not Depend on Variations in Cosmic Rays and Cloud Coverage // Geomagnetism and Aeronomy. 2019, Vol. 59, No. 7, pp. 935–941. DOI: 10.1134/S0016793219070028
    and
    H.I. Abdussamatov Cosmic Rays and Clouds Variations Effect on the Climate is Insignificantly // Applied Physics Research. 2018. Vol. 10, No. 4, pp. 81-86. doi:10.5539/apr.v10n4p81
    Back on July 28, 2018, I sent my second article to «Jim O’Brien» , «Jed van de Poll» , «Tim Gleeson» , «John Butler» , «Peter O’Neill» , «Brian Sweeney» , «Ed Walsh» , «Tony Barry» , «Henrik Svensmark» , «Dr Nicola Scafetta» , » Dr Nir Shaviv.alt» , «Tony Carey»
    However, scientific objections from Prof. Svensmark and Shaviv against my results I have not received.
    May 28, Habibullo Abdussamatov

  3. Interessant at den 81-årige russiske astrofysikeren og solforskeren Habibullo Abdussamatov fremdeles er aktiv i kommentarspalter. Abdussamatov er jo bl.a. kjent fra russernes Astrometria-prosjektet (opp mot den internasjonale romstasjonen) og som sjef for Pulkovo-observatoriet. Og ikke minst er han kjent for å tydelig imøtegå IPCC-miljøets CO2-baserte spådommer om menneskeskapt global oppvarming fram mot 2100. Tvert i mot har han med basis i modellert framskriving av solsyklusene, først solsyklus 26 som dekker tiåret 2030-40, argumentert for at en reduksjon i solaktiviteten vil føre kloden fram mot en kaldere tilstand a la Maunder-minimum i den lille istid.
    Det var vel flere som noterte seg at Abdussamatov i denne forbindelse ble omtalt hos Klimarealistene for 6-7 år tilbake da solforskeren Zharkova profilerte seg med tilsvarende funn i sin forskning.
    Den gangen var det Abdussamatovs forskningsrapport fra 2013 som varslet en begynnende nedgang fra toppen av nåværende solsyklus, med en reversering av all oppvarming siste 100-120 år til ca 2040, med en ytterligere nedgang i temperatur på 0,6 grader til 2055.
    Har ikke rukket å lese de to nye rapportene han lenker til nå, men hovedbildet er vel at Abdussamatov fremdeles mener at de underliggende solsyklusene er av mer primær betydning enn Svensmarks sterkere framheving av kosmisk strålings betydning for skydannelse.

    Jeg har personlig lenge hatt størst tro på solens grunnleggende sykliske variasjonsbetydning for jordens klima, og har tilsvarende hatt problemer med å se hvordan skydannelse kan representere et hovedgrunnlag for de historisk observerte sykliske temperatursvingninger, jfr. alt fra 30/60 år-syklusene som vi tydeligst ser i de tilbakevendende kalde/varme periodene i Arktis, til 500/1000 års-syklusene (de omtrent 500-årige periodene for den lille istid, varm middelalder, varm romertid, den minoiske varmeperiode og de tilsvarende kaldere 500-års periodene i mellom disse).
    Om Svensmark derimot kan vise at solen også er den egentlige sykliske «motor» bak variasjonene i skydannelsene, er det kanskje mer snakk om en viss skinnuenighet i disse sentrale spørsmålene? Felles for både Svensmark og Abdussamatov (og Zharkova m.fl. for den del) er vel at man mener betydningen av CO2 er overvurdert/feilaktig og at man må arbeide mer med å forstå solens faktiske betydning for jordens klimavariasjoner.

    • Solens TSI er en ting, men samtidig varierer magnetfelt, frekvensforskyvninger med særlig betydning for UV-andel m.fl. Forbusheffekten gir en økning av vanninnholdet i atmosfæren etter corona mass ejection. Magnetfeltets betydning for dråpedannelse synes vel dokumentert i laboratorieforsøk. Men hvor mye betyr den i de ulike nedbørsoner, evnetuelt som en forsterkningseffekt? Har sett tydelige sammenhenger med vannstanden i Viktoriasjøen. Kanskje ikke like mye ved nedbørsmekanismen vi har langs norskekysten med høye fjell. Svendsmark sier det sannsynligvis har størst effekt over hav (71 %). Men hvor stor betydning har den globalt? Uamsett er det primært en av soles mange bidrag.
      Det paradoksale er at IPCC har lagt dette praktisk talt i skuffen samtidig som de har innrømmet at modellene har svak forståelse av skyer.

    • Det er korrekt at Henrik Svensmark ble degradert fra professor til seniorforsker ved DTU i desember 2016, et tidspunkt hvor han normalt skulle få stadfestet sitt professorat. Man kan trygt anta at det her er de samme krefter som var på ferde, som da CERN-laboratoriet stadfestet Svensmarks forskning hvor Svensmark selv ikke fikk være tilstede, og hvor resultatet ble publisert uten noen henvisning til Svensmarks tidligere banebrytende forskning på sammenhengen mellom kosmisk stråling og dannelse av skydråper.

      Klimaindustrien og deres klakkører har fått en ødeleggende virkning på fri forskning og akademisk ytringsfrihet.

  4. Just a comment. I did respond to Abdussamatov directely as did Nir Shaviv to his paper «Cosmic Rays and Clouds Variations Effect on the Climate is Insignificantly». The corespondance can be seen below:

    My response (Henrik Svensmark Monday, 30 July 2018 at 15.38):

    Dear All,
    Thanks for the preprint. Yes ΔE = E1–Eo ~ 0 for thick convective clouds, but for the endless marine stratus clouds this is not the case. Here the short wave effect dominates cloud changes, and this is based on Satellite observations of the radiative budget. I understand that the author argues for the effect of TSI being the most important influence, which is perfectly ok. However, where we have real observations of TSI 1978 to present, TSI is too small (0.2 W/m2, taking albedo and geometry in to consideration) to explain the variations observed in the oceans heat budget (1 W/m2, Shaviv 2008) over the 11 year solar cycle, by a factor of at least 5. Some amplification is needed. And cloud variations of the order ~2% as measured from ERBE results in a ~1 W/m2 forcing. Now this does not exclude larger TSI variations in the past, since we have no direct measurement, but it seems unlikely (most reconstructions of TSI now gives a ~1 W/m2 change in TSI since the Maunder Minimum. Taking albedo and geometry into account this amounts to 0.2 W/m2 (I know that there are suggestions of larger forcing but they still will have a small influence on climate).
    Summarizing, I do not think that the present paper makes a good case against cosmic rays and clouds.
    Best wishes,
    Henrik

    Nir Shaviv’s response (Tuesday, 31 July 2018 at 15.03):

    Hi everyone, sorry for the delayed reply.

    Anyway, I read the manuscript. Here are my comments (which are related to Henrik’s).

    1) The TSI increase from the Maunder Minimum adopted by the IPCC seems awfully low. They do that because it has always been their interest to diminish the possibility that the sun has played any role in the 20th century warming. They did that to such an extent that it is impossible to then explain things like the Little Ice Age. On the other hand, having TSI variations of 0.4% although possible, are a problem without any more direct evidence (e.g., large solar cycle to solar cycle variations in the TSI). So, I am personally agnostic about the 0.4%. If it is there, it means that the role that the sun has played over the 20th century is even larger than estimated directly by any of us (as opposed to indirectly by fitting a solar contribution).

    2) The analysis that states that cloud cover variations cannot have an effect on the energy budget and therefore the cosmic ray climate link cannot be true is wrong as it is missing a very important term, that of emission from the cloud tops. Namely, the estimate in the paper looks at the reduction of the radiation emitted from the surface to space, but excludes the increase in the radiation emitted from clouds to space.

    One can estimate the expected size of this term. Since the cloud cover variations over the solar cycle are of order 1.5% in absolute terms, we’re talking about more than 3 W/m^2 increased emission to space. This is consistent with the Earth Radiation Budget Experiment estimate for the radiative forcing associated with the cloud cover, which gives as the net radiative (SW+LW) cooling of 18 W/m^2 for the 30% or so of the global area covered with low altitude clouds. Namely, the cloud cover variations over the solar cycle give something like 1 W/m^2 over the solar cycle.

    3) As Henrik wrote, one can also see the amount of heat that goes into the oceans every solar cycle and see that it is about 1-1.5 W/m^2 (see https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2007JA012989 and https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2014JA020732 ).
    On the other hand, the TSI variations observed over the solar cycle are only about 0.2 W/m^2 (when averaged over Earth’s surface). There is no possible feedback that can explain how there is so much heat variations in the oceans if the only energy budget change is that of the TSI (see section 2 of the first paper above. On the other hand, the cloud cover variations are totally consistent with the observed ocean heat content variations.

    4) Of course, on long time scale the TSI variations could be large, but it doesn’t imply that cosmic ray / climate link is irrelevant.

    To summarize
    – The simple estimate of Delta E in the paper is wrong as it is missing an important term.
    – Empirical results show that the energy budget change of the cloud cover is consistent with the energy content change in the oceans, but much larger than the observed TSI variations over the solar cycle. Thus, cloud cover variations (presumably through cosmic ray flux variations) are necessarily important for linking solar activity with climate. Long term TSI variations may also be important, but they certainly are not over the solar cycle.

    — Nir

    p.s., note that the first equation is missing a feedback term through change of the emissivity. The whole reason that people claim climate sensitivity is large is through watervapor feedback through this term (though the sensitivity is actually low, but that’s another story altogether).

Kommentarer er stengt.